Formation (differentiation process) of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis) from hematopoietic stem cells (HSCs); regulation factors involved. This video and other related images/videos (in HD) are available for instant download licensing here:
https://www.alilamedicalmedia.com/-/g...
©Alila Medical Media. All rights reserved.
Voice by Ashley Fleming
Support us on Patreon and gain early access to our videos and FREE images downloads: patreon.com/AlilaMedicalMedia
All images/videos by Alila Medical Media are for information purposes ONLY and are NOT intended to replace professional medical advice, diagnosis or treatment. Always seek the advice of a qualified healthcare provider with any questions you may have regarding a medical condition.
All formed elements of the blood derive from a common progenitor – the hematopoietic stem cells, HSCs. HSCs are multipotent, meaning they can differentiate to all types of blood cells. They also have the ability to multiply constantly to maintain their numbers in the bone marrow. Formation of blood cells from hematopoietic stem cells is a multi-step process, involving several intermediate progenitors, and is regulated by a network of signaling molecules, known as cytokines. These cytokines control the proliferation, differentiation and survival or death of the various progenitors. By doing so, they maintain steady-state levels of blood cells in normal situations; and, in response to certain stimuli, induce production of a particular cell type. For example, in response to blood loss, production of red blood cells is accelerated.
Differentiation starts when progenitor cells develop surface receptors for a specific stimulating factor. Once this happened, the cells lose their potency and become committed to a certain cell type.
Production of red blood cells, RBC, or erythrocytes, is stimulated by erythropoietin, EPO. During the differentiation process, the cells reduce in size, increase in number, start making hemoglobin, and lose their nucleus. EPO is produced predominantly by the liver during fetal development and by the kidneys in adulthood. Low levels of EPO are constitutively secreted and are sufficient to compensate for normal red blood cell turnover. When RBC count drops, such as during blood loss, the resulting oxygen-deficiency state, hypoxemia, is detected by the kidneys. The kidneys respond by increasing their EPO secretion, which leads to increased red blood cell production by the end of 3 to 5 days. People living at high altitudes usually have higher RBC count as a response to lower oxygen levels. Athletes whose demand for oxygen is more elevated, also have higher RBC counts.
Production of granulocytes and macrophages, the key players of the body’s innate immune response, is controlled by several colony-stimulating factors, CSFs. Normally, these cells are kept at a more or less constant number, by relatively low levels of CSFs, but their production can increase greatly and quickly upon infection. CSFs are commonly secreted by mature lymphocytes and macrophages, but can be produced, if needed, by virtually any organ or cell type. CSF production may increase a thousand-fold in response to indicators of infection, such as bacterial endotoxins.
Production of platelets is stimulated by thrombopoietin, TPO, a hormone secreted by the kidneys and liver. TPO is responsible for formation of megakaryocytes – the gigantic cells that develop as a result of multiple rounds of DNA replication without cell division. A megakaryocyte gives rise to tens of thousands of platelets, which are essentially broken fragments of its cytoplasm. Production of platelets is subject to a classic negative feedback loop: reduced platelet levels in the blood promote their production, while elevated levels inhibit it.
©Alila Medical Media. All rights reserved.
Voice by Ashley Fleming
Support us on Patreon and gain early access to our videos and FREE images downloads: patreon.com/AlilaMedicalMedia
All images/videos by Alila Medical Media are for information purposes ONLY and are NOT intended to replace professional medical advice, diagnosis or treatment. Always seek the advice of a qualified healthcare provider with any questions you may have regarding a medical condition.
All formed elements of the blood derive from a common progenitor – the hematopoietic stem cells, HSCs. HSCs are multipotent, meaning they can differentiate to all types of blood cells. They also have the ability to multiply constantly to maintain their numbers in the bone marrow. Formation of blood cells from hematopoietic stem cells is a multi-step process, involving several intermediate progenitors, and is regulated by a network of signaling molecules, known as cytokines. These cytokines control the proliferation, differentiation and survival or death of the various progenitors. By doing so, they maintain steady-state levels of blood cells in normal situations; and, in response to certain stimuli, induce production of a particular cell type. For example, in response to blood loss, production of red blood cells is accelerated.
Differentiation starts when progenitor cells develop surface receptors for a specific stimulating factor. Once this happened, the cells lose their potency and become committed to a certain cell type.
Production of red blood cells, RBC, or erythrocytes, is stimulated by erythropoietin, EPO. During the differentiation process, the cells reduce in size, increase in number, start making hemoglobin, and lose their nucleus. EPO is produced predominantly by the liver during fetal development and by the kidneys in adulthood. Low levels of EPO are constitutively secreted and are sufficient to compensate for normal red blood cell turnover. When RBC count drops, such as during blood loss, the resulting oxygen-deficiency state, hypoxemia, is detected by the kidneys. The kidneys respond by increasing their EPO secretion, which leads to increased red blood cell production by the end of 3 to 5 days. People living at high altitudes usually have higher RBC count as a response to lower oxygen levels. Athletes whose demand for oxygen is more elevated, also have higher RBC counts.
Production of granulocytes and macrophages, the key players of the body’s innate immune response, is controlled by several colony-stimulating factors, CSFs. Normally, these cells are kept at a more or less constant number, by relatively low levels of CSFs, but their production can increase greatly and quickly upon infection. CSFs are commonly secreted by mature lymphocytes and macrophages, but can be produced, if needed, by virtually any organ or cell type. CSF production may increase a thousand-fold in response to indicators of infection, such as bacterial endotoxins.
Production of platelets is stimulated by thrombopoietin, TPO, a hormone secreted by the kidneys and liver. TPO is responsible for formation of megakaryocytes – the gigantic cells that develop as a result of multiple rounds of DNA replication without cell division. A megakaryocyte gives rise to tens of thousands of platelets, which are essentially broken fragments of its cytoplasm. Production of platelets is subject to a classic negative feedback loop: reduced platelet levels in the blood promote their production, while elevated levels inhibit it.
Hematopoiesis - Formation of Blood Cells, Animation circulatory system in animals | |
303 Likes | 303 Dislikes |
15,419 views views | 260K followers |
Felipe Gonzalez R Education | Upload TimePublished on 20 May 2019 |
Không có nhận xét nào:
Đăng nhận xét